DESIGN AND EVALUATION OF A SMART ELECTROTHERAPY UNIT TO OPTIMIZE REHABILITATION: A CLINICAL TRIAL
Keywords:
Paralysis, rehabilitation, electrotherapy, remote control, functional electrical stimulation, transcutaneous electrical nerve stimulationAbstract
Background of the study: Stroke survivors are at high risk of paralysis, either in one form or another. In the following context, rehabilitation has been a practical domain to cater to the challenges and limitations faced by stroke individuals. To be precise, electrotherapy has proven to be a promising solution for pain and spasticity. This project aims to take an optimistic approach by integrating TENS and FES into a single system and, concurrently, designing a Bluetooth-controlled app to enable remote control of the device's modes and parameters.
Methodology: A battery powers the SET Unit and the user operates the device through a Bluetooth mobile app. The input is fed to the microcontroller that processes the input and sends control signals to the TENS or FES unit. The selected module generates electrical pulses delivered to the patient's body through electrodes placed at the specified area. Simultaneously, feedback is provided to and from the mobile app to adjust the parameters or send real-time updates of the therapy session.
Results: The results consisted of obtaining monophasic waves and controlling the pulse width modulation (PWM) and pulse amplitude within the range of 1-50 mA for TENS and 1-100 mA for FES. These parameters were successfully varied using a smartphone application.
Conclusion: Smart Electrotherapy Unit (SET) will bring innovation in rehabilitation and physiotherapy, providing an exhaustive solution to pain management and muscular movement.
References
Lin T, Gargya A, Singh H, Sivanesan E, Gulati A. Mechanism of peripheral nerve stimulation in chronic pain. Pain Med. 2020 Aug;21(Suppl 1):S6–S12. doi: 10.1093/pm/pnaa164.
Chen R, Li M, Ding M. Optogenetic stimulation of the "Zusanli" acupoint alleviates inflammatory pain through active Wnt/β-Catenin and MAPK signaling pathway in rats. Heliyon. 2024 Oct 30;10(21):e39992
.
Zhou S, Hussain N, Abd-Elsayed A, Boulos R, Hakim M, Gupta M, et al. Peripheral nerve stimulation for treatment of headaches: an evidence-based review. Biomedicines. 2021 Oct 31;9(11):1588.
Campbell TS, Johnson JA, Zernicke KA. Gate control theory of pain. In: Gellman MD, editor. Encyclopedia of Behavioral Medicine. Cham: Springer International Publishing; 2020; 914–6.
Shirley J. The gate theory of pain revisited: modeling different pain conditions with a parsimonious neurocomputational model [Internet]. Accessed: Sep 11, 2024.
Rewiring the lesioned brain: electrical stimulation for post-stroke motor restoration [Internet]. Accessed: Sep 11, 2024.
Debeuf R, De Vlieger D, Defour A, Feyen K, Guida S, Cuypers L, et al. Electrotherapy in stroke rehabilitation can improve lower limb muscle characteristics: a systematic review and meta-analysis. Disabil Rehabil. 2024 Apr 1:1–17.
Fernández-Pérez JJ, Serrano-Muñoz D, Gómez-Soriano J, Álvarez DM, Avendaño-Coy J. Selective nociceptive modulation using a novel prototype of transcutaneous kilohertz high-frequency alternating current stimulation: a crossover double-blind randomized sham-controlled trial. J Neuroeng Rehabil. 2024 Nov 15;21(1):203.
Perez Navarro M, Esquenazi B. Use of transcutaneous electrical nerve stimulation (TENS) for pain management during intrauterine device insertion: a case series. Cureus. 2024 Sep 13;16(9):e69324.
Alam M, Tabrizi R, Mohammadikhah M, Farzan A, Moslemi H, Farzan A, et al. Effect of transcutaneous electrical nerve stimulation on maximum mouth opening after orthognathic surgery: a randomised controlled trial. Ann Med Surg (Lond). 2024 Sep 30;86(11):6555–60.
Inamdar M, Mehendale N. A review on transcutaneous electrical nerve stimulation and its applications. SN Compr Clin Med. 2021 Dec;3. doi: 10.1007/s42399-021-01065-1.
Chin M, Popovic M. Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: a review. BioMed Eng OnLine. 2020;19. doi: 10.1186/s12938-020-00773-4.
Wilson R, Gunzler D, Bennett M, Chae J. Peripheral nerve stimulation compared to usual care for pain relief of hemiplegic shoulder pain: a randomized controlled trial. Am J Phys Med Rehabil. 2014 Jan;93:17–28. doi: 10.1097/PHM.0000000000000011
Park SJ, Wang JS. The immediate effect of FES and TENS on gait parameters in patients after stroke. J Phys Ther Sci. 2017 Dec;29:2212–4. doi: 10.1589/jpts.29.2212.
An easy-to-build transcutaneous electrical stimulator for spinal cord stimulation therapy [Internet]. Accessed: Sep 11, 2024.
Sonwane A, Patil CY, Deshmukh G. Design and development of portable transcutaneous electrical nerve stimulation device and basic principles for the use of TENS. 2018 May. p. 285–7. doi: 10.1109/ICOEI.2018.8553898.
Mujib M, et al. Comparative neurological and behavioral assessment of central and peripheral stimulation technologies for induced pain and cognitive tasks. Biomedicines. 2024 Jun;12:1269.
Fanninger S, Plener PL, Fischer MJM, Kothgassner OD, Goreis A. Water temperature during the cold pressor test: a scoping review. Physiol Behav. 2023 Nov;271:114354. doi: 10.1016/j.physbeh.2023.114354.
Mitchell LA, MacDonald RAR, Brodie EE. Temperature and the cold pressor test. J Pain. 2004 May;5(4):233–7. doi: 10.1016/j.jpain.2004.03.004.
Khan A, Li K, Wei N. Integrated design of functional electrical stimulator and transcutaneous electrical nerve stimulator on a single prototype. 2021 Jul. p. 453–8. doi: 10.1109/ICARM52023.2021.9536149.
Sulaiman N, Ibrahim A, Mohd Zaman MH. A programmable transcutaneous electrical nerve stimulation device based on Arduino and remote control using a smartphone. Int J Adv Technol Eng Explor. 2021 Feb;8:320–7.
Sarkar S. Design of transcutaneous electrical nerve stimulating machine using 555 timer. 2016. doi: 10.21275/ART20162812.
Patton E, Tissenbaum M, Harunani F. MIT App Inventor: objectives, design, and development. 2019. p. 31–49. doi: 10.1007/978-981-13-6528-7_3.
Pereira S, Mehta S, McIntyre A, Lobo L, Teasell R. Functional electrical stimulation for improving gait in persons with chronic stroke. Top Stroke Rehabil. 2012 Nov;19:491–8. doi: 10.1310/tsr1906-491.
Howlett OA, Lannin NA, Ada L, McKinstry C. Functional electrical stimulation improves activity after stroke: a systematic review with meta-analysis. Arch Phys Med Rehabil. 2015 May;96(5):934–43. doi: 10.1016/j.apmr.2015.01.013.
Tashani O, Johnson M. Transcutaneous electrical nerve stimulation (TENS): a possible aid for pain relief in developing countries? Libyan J Med. 2009 Jun;4:62–5. doi: 10.4176/090119.
In TS, Jung JH, Jung KS, Cho HY. Effectiveness of transcutaneous electrical nerve stimulation with taping for stroke rehabilitation. Biomed Res Int. 2021;2021:9912094. doi: 10.1155/2021/9912094.
Visconti MJ, Haidari W, Feldman SR. Transcutaneous electrical nerve stimulation (TENS): a review of applications in dermatology. J Dermatol Treat. 2020 Dec;31(8):846–9. doi: 10.1080/09546634.2019.1657227.
Kaplan B, Rabinerson D, Lurie S, Bar J, Krieser UR, Neri A. Transcutaneous electrical nerve stimulation (TENS) for adjuvant pain relief during labor and delivery. Int J Gynaecol Obstet. 1998 Mar;60(3):251–5. doi: 10.1016/s0020-7292(97)00275-0.
K. Shahid, “(PDF) A Comprehensive Review of Physical Therapy Interventions for Stroke Rehabilitation: Impairment-Based Approaches and Functional Goals.” Accessed: Sep. 11, 2024.
S. S. M. Ng and C. W. Y. Hui-Chan, “Transcutaneous electrical nerve stimulation combined with task-related training improves lower limb functions in subjects with chronic stroke,” Stroke, vol. 38, no. 11, pp. 2953–2959, Nov. 2007, doi: 10.1161/STROKEAHA.107.490318.
E. J. Moore D., “Effectiveness of upper limb functional electrical stimulation after stroke for the improvement of activities of daily living and motor function: a systematic review and meta-analysis - PubMed.” Accessed: Sep. 11, 2024.
“McNiece Tens Inc.,” McNiece Tens. Accessed: Sep. 11, 2024.
“Functional Electrical Stimulation Market Size & share to 2033,” Functional Electrical Stimulation Market. Accessed: Sep. 11, 2024.
L. Farooq et al., “Affordable Design and Implementation of a 4-Channel EEG Bio-signal Amplification System with Mobile App Visualization Interface: Affordable 4-Channel EEG Bio-signal Amplifier,” Allied Med. Res. J., vol. 2, no. 2, pp. 226–236, 2024. doi: 10.59564/amrj/02.02/031
M. D. Mujib, M. A. Hasan, S. A. Qazi, and A. Vuckovic, “Understanding the neurological mechanism involved in enhanced memory recall task following binaural beat: a pilot study,” Exp. Brain Res., vol. 239, pp. 2741–2754, 2021. doi: 10.1007/s00221-021-06132-6
M. D. Mujib, A. Z. Rao, M. A. Hasan, A. Ikhlaq, S. A. Buzdar, and S. A. Qazi, “Frontal cortex cooling and modulation of brain frequencies using a wearable Peltier device,” Phys. B Condens. Matter, vol. 652, p. 414641, 2023. doi: 10.1016/j.physb.2023.414641
M. A. Hasan, H. Shahid, S. A. Qazi, O. Ejaz, M. D. Mujib, and A. Vuckovic, “Underpinning the neurological source of executive function following cross hemispheric tDCS stimulation,” Int. J. Psychophysiol., vol. 185, pp. 1–10, 2023. doi: 10.1016/j.ijpsycho.2023.01.004
M. A. Hasan, P. Sattar, S. A. Qazi, M. Fraser, and A. Vuckovic, “Brain networks with modified connectivity in patients with neuropathic pain and spinal cord injury,” Clin. EEG Neurosci., p. 15500594211051485, 2021.
M. Ather et al., “Efficacy of audiovisual neurofeedback training for attention enhancement: a multimodal approach,” NeuroReport, pp. 10–1097, 2024. doi: 10.1097/WNR.0000000000002063
A. Z. Rao, S. S. Siddique, M. D. Mujib, M. A. Hasan, A. O. Alokaily, and T. Tahira, “Sensor Fusion and Machine Learning for Seated Movement Detection With Trunk Orthosis,” IEEE Access, vol. 12, pp. 41676–41687, 2024. doi: 10.1109/ACCESS.2024.3377111
S. Marappan, M. D. Mujib, A. A. Siddiqui, A. Aziz, S. Khan, and M. Singh, “Lightweight Deep Learning Classification Model for Identifying Low-Resolution CT Images of Lung Cancer,” Comput. Intell. Neurosci., vol. 2022, pp. 1–10, Aug. 2022. doi: 10.1155/2022/3836539.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Pakistan Journal of Rehabilitation
This work is licensed under a Creative Commons Attribution 4.0 International License.