Recent Orthodontic Advancements: A Systematic Review
DOI:
https://doi.org/10.36283/ziun-pjmd13-4/021Keywords:
Recent Advances, Digital Orthodontics, Precision Orthodontics, AI Orthodontics, Zirconia BracketsAbstract
Background: The year 2023 has witnessed unprecedented advancements in orthodontic treatments, offering patients an enhanced level of comfort, efficiency, and effectiveness in dental care. This systematic review aims to identify the recent developments in the field of orthodontics and discuss their performance about clinical application.
Methods: The literature for this paper was identified and selected by performing a thorough search in electronic databases like PubMed, Medline, Embase, Cochrane, Google Scholar, Scopus, Web of Science, published over the past five years. Literature reviews, systematic reviews, and meta-analyses from January 2019– December 2023 were included in the study. Recent original articles within the past five years related to orthodontic advancements were also included in the study. After applying inclusion and exclusion criteria, 26 articles were scrutinized, studied, and then critically analyzed. Quality analysis was performed using QUADAS-2.
Results: This study reveals that technological advancement and research in the field of orthodontics is getting pace. The field of orthodontics has embraced state-of-the-art technology, including digital orthodontics, customized clear aligners, accelerated treatment options, AI, and robotic wire bending, to revolutionize smiles and improve oral health.
Conclusion: As technological advancements persist in the trajectory; one can foresee imminent and revolutionary breakthroughs in the years ahead. This study will help and guide orthodontists to enhance their treatment strategies by keeping pace with the recent advancements in the field.
References
Kapila S, Vora SR, Venugopalan SR, Elnagar MH, Akyalcin S. Connecting the dots towards precision orthodontics. Orthod Craniofac Res. 2023;26(Suppl. 1):8–19. https://doi.org/10.1111/ocr.12725.
Mohammad-Rahimi H, Nadimi M, Rohban MH, Shamsoddin E, Lee VY, Motamedian SR. Machine learning and orthodontics, current trends and the future opportunities: A scoping review. Am J Orthod Dentofacial Orthop. 2021 Aug;160(2):170-92.e4.
doi: 10.1016/j.ajodo.2021.02.013.
McGrath TA, Alabousi M, Skidmore B, et al. Recommendations for reporting of systematic reviews and meta-analyses of diagnostic test accuracy: a systematic review. Syst Rev. 2017 ;6(1):194. doi: 10.1186/s13643-017-0590-8.
Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2 Group. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529-36. doi: 10.7326/0003-4819-155-8-201110180-00009.
Tartaglia GM, Mapelli A, Maspero C, Santaniello T, Serafin M, Farronato M, Caprioglio A. Direct 3D Printing of Clear Orthodontic Aligners: Current State and Future Possibilities. Materials (Basel). 2021 Apr 5;14(7):1799. doi: 10.3390/ma14071799
Panayi NC. In-office Customized Brackets: Aligning with the Future. Turk J Orthod. 2023 ;36(2):143-8. doi: 10.4274/TurkJOrthod.2023.2023.21.
Panayi NC. DIY orthodontics: design it yourself. Chicago: Quintessence Publishing; 2021.
Ojima K, Dan C, Nishiyama R, Ohtsuka S, Schupp W. Accelerated extraction treatment with Invisalign. J Clin Orthod. 2014;48(8):487-99.
Wang J, Bukhari A, Tai SK, Zou B. Dimensional changes in the palate associated with Invisalign First System: a pilot study. Angle Orthod. 2023;93(5):524-530. doi: 10.2319/110422-755.1.
El-Bialy T et al. Mandibular Advancement in Adult Skeletal Class II Patients Using Clear Aligners and Photobiomodulation. J Clin Orthod. 2021 Jan;55(1):11-19. PMID: 33822759.
Bichu YM, Alwafi A, Liu X, Andrews J, Ludwig B, Bichu AY, Zou B. Advances in orthodontic clear aligner materials,Bioactive Materials.2023;22:384-403. https://doi.org/10.1016/j.bioactmat.2022.10.006.
Hertan, E., McCray, J., Bankhead, B et al. Force profile assessment of direct-printed aligners versus thermoformed aligners and the effects of non-engaged surface patterns. Prog Orthod. 2022;23:49. https://doi.org/10.1186/s40510-022-00443-2.
Koenig N, Choi JY, McCray J, Hayes A, Schneider P, Kim KB. Comparison of dimensional accuracy between direct-printed and thermoformed aligners. Korean J Orthod. 2022 ;52(4):249-57. doi: 10.4041/kjod21.269.
I.E. A head-mounted three dimensional display. In Proceedings of the December 9–11, 1968, Fall Joint Computer Conference, Part I on—AFIPS ’68 (Fall, Part I); ACM: New York, NY, USA, 1968; pp. 757–764. https://doi.org/10.1145/1476589.1476686.
Xue C, Xu H, Guo Y, Xu L, Dhami Y, Wang H, Liu Z, Ma J, Bai D. Accurate bracket placement using a computer-aided design and computer-aided manufacturing-guided bonding device: An in vivo study. Am J Orthod Dentofacial Orthop. 2020;157(2):269-277. doi: 10.1016/j.ajodo.2019.03.022. PMID: 32005479.
Koo BC, Chung CH, Vanarsdall RL et al. Comparison of the accuracy of bracket placement between direct and indirect bonding techniques. Am J Orthod Dentofacial Orthop. 1999;116(3):346-51. doi: 10.1016/s0889-5406(99)70248-9.
Grünheid T, Lee MS, Larson BE. Transfer accuracy of vinyl polysiloxane trays for indirect bonding. Angle Orthod. 2016;86(3):468-74. doi: 10.2319/042415-279.1.
Lo Y-C, Chen G-A, Liu Y-C, Chen Y-H, Hsu J-T, Yu J-H. Prototype of Augmented Reality Technology for Orthodontic Bracket Positioning: An In Vivo Study. Applied Sciences. 2021; 11(5):2315. https://doi.org/10.3390/app11052315
Kontonasaki E, Rigos AE, Ilia C, Istantsos T. Monolithic Zirconia: An Update to Current Knowledge. Optical Properties, Wear, and Clinical Performance. Dent J (Basel). 2019 ;7(3):90. doi: 10.3390/dj7030090.
Zhang Y, Lawn BR. Novel Zirconia Materials in Dentistry. J Dent Res. 2018;97(2):140-7. doi: 10.1177/0022034517737483.
Kelly JR, Denry I. Stabilized zirconia as a structural ceramic: an overview. Dent Mater. 2008 ;24(3):289-98. doi: 10.1016/j.dental.2007.05.005.
Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater. 2008 ;24(3):299-307. doi: 10.1016/j.dental.2007.05.007.
Maki K, Futaki K, Tanabe S, Takahashi M, Ichikawa Y, Yamaguchi T. Applicative Characteristics of a New Zirconia Bracket with Multiple Slots. Int J Dent. 2016:4348325. doi: 10.1155/2016/4348325.
Panayi NC. In-house three-dimensional designing and printing customized brackets. J World Fed Orthod. 2022;11(6):190-6. doi: 10.1016/j.ejwf.2022.10.004.
Zang N, Tao H, Liang Z, Liu H, He J, Wang B. Comparison of the shear rebond strength of zirconia brackets treated with different Er:YAG laser energies. Dent Mater J. 2023;42(3):405-11. doi: 10.4012/dmj.2022-126
Tong H, Tanaka CB, Kaizer MR, et al. Characterization of three commercial Y-TZP ceramics produced for their high-translucency, high-strength and high-surface area. Ceram Int. 2016 Jan 1;42(1 Pt B):1077-85. doi: 10.1016/j.ceramint.2015.09.033.
Pekkan G, Pekkan K, Bayindir BÇ, Özcan M, Karasu B. Factors affecting the translucency of monolithic zirconia ceramics: A review from materials science perspective. Dent Mater J. 2020 ;39(1):1-8. doi: 10.4012/dmj.2019-098.
Park, C., Giap, HV., Kwon, JS et al. Dimensional accuracy, mechanical property, and optical stability of zirconia orthodontic bracket according to yttria proportions. Sci Rep. 2023;13:20418. https://doi.org/10.1038/s41598-023-47827-w
Bichu YM, Hansa I, Bichu AY, et al. Applications of artificial intelligence and machine learning in orthodontics: a scoping review. Prog Orthod. 2021 5;22(1):18. doi: 10.1186/s40510-021-00361-9.
Ahmed N, Chethana, Younus AA, Aymen U, Rahul NA. Artificial intelligence in orthodontics: A way towards modernization. Indian Journal of Orthodontics and Dentofacial Research 2023;9(1):3–7. https://doi.org/10.18231/j.ijodr.2023.002.
Lee H, Tajmir S, Lee J, Zissen M, Yeshiwas BA, Alkasab TK, Choy G, Do S. Fully Automated Deep Learning System for Bone Age Assessment. J Digit Imaging. 2017;30(4):427-41. doi: 10.1007/s10278-017-9955-8.
Kok, H, Acilar, A.M. & Izgi, M.S. Usage and comparison of artificial intelligence algorithms for determination of growth and development by cervical vertebrae stages in orthodontics. Prog Orthod. 2019;20:41. https://doi.org/10.1186/s40510-019-0295-8.
Mathew R, Palatinus S, Padala S, Alshehri A, Awadh W, Bhandi S, Thomas J, Patil S. Neural networks for classification of cervical vertebrae maturation: a systematic review. Angle Orthod. 2022;92(6):796-804. doi: 10.2319/031022-210.1. PMID: 36069934; PMCID: PMC9598845.
Guo YC, Han M, Chi Y, Long H, Zhang D, Yang J, Yang Y, Chen T, Du S. Accurate age classification using manual method and deep convolutional neural network based on orthopantomogram images. Int J Legal Med. 2021;135(4):1589-97. doi: 10.1007/s00414-021-02542-x.
Zhou J, Zhou H, Pu L, Gao Y, Tang Z, Yang Y, You M, Yang Z, Lai W, Long H. Development of an Artificial Intelligence System for the Automatic Evaluation of Cervical Vertebral Maturation Status. Diagnostics (Basel). 2021;11(12):2200. doi: 10.3390/diagnostics11122200.
Seo H, Hwang J, Jeong T, Shin J. Comparison of Deep Learning Models for Cervical Vertebral Maturation Stage Classification on Lateral Cephalometric Radiographs. J Clin Med. 2021 ;10(16):3591. doi: 10.3390/jcm10163591.
Mohammad-Rahimi H, Motamadian SR, Nadimi M, Hassanzadeh-Samani S, Minabi MAS, Mahmoudinia E, Lee VY, Rohban MH. Deep learning for the classification of cervical maturation degree and pubertal growth spurts: A pilot study. Korean J Orthod. 2022;52(2):112-122. doi: 10.4041/kjod.2022.52.2.112.
Kwon HJ, Koo HI, Park J, Cho NI. Multistage probabilistic approach for the localization of cephalometric landmarks. IEEE Access.2021;9:21306–21314. DOI:10.1109/ACCESS.2021.3052460.
Kim H, Shim E, Park J, Kim YJ, Lee U, Kim Y. Web-based fully automated cephalometric analysis by deep learning. Comput Methods Programs Biomed. 2020;194:105513. doi: 10.1016/j.cmpb.2020.105513.
Lee, H., Park, M. & Kim, J. Cephalometric landmark detection in dental X-ray images using convolutional neural networks. In Medical Imaging 2017: Computer-Aided Diagnosis. Vol. 10134. 101341W (International Society for Optics and Photonics, 2017) DOI:10.1117/12.2255870
Kim MJ, Liu Y, Oh SH, Ahn HW, Kim SH, Nelson G. Automatic Cephalometric Landmark Identification System Based on the Multi-Stage Convolutional Neural Networks with CBCT Combination Images. Sensors (Basel). 2021;21(2):505. doi: 10.3390/s21020505.
Takahashi K, Shimamura Y, Tachiki C, Nishii Y, Hagiwara M. Cephalometric landmark detection without X-rays combining coordinate regression and heatmap regression. Sci Rep. 2023; 16;13(1):20011. doi: 10.1038/s41598-023-46919-x.
Nilsson NJ. Artificial Intelligence: A New Synthesis. San Francisco: Morgan Kaufmann; 1998. p. 493.
Harris EF, Smith RJ. Occlusion and arch size in families. A principal components analysis. Angle Orthod. 1982 Apr;52(2):135-43. doi: 10.1043/0003-3219(1982)052<0135:OAASIF>2.0.CO;2.
Real AD, Real OD, Sardina S, Oyonarte R. Use of automated artificial intelligence to predict the need for orthodontic extractions. Korean J Orthod. 2022;52(2):102-111. doi: 10.4041/kjod.2022.52.2.102.
Miranda F, Choudhari V, Barone S, et al. Interpretable artifcial intelligence for classifcation of alveolar bone defect in patients with cleft lip and palate. Scientifc Reports .2023;13:15861. https://doi.org/10.1038/s41598-023-43125-7.
Strunga M, Urban R, Surovková J, Thurzo A. Artificial Intelligence Systems Assisting in the Assessment of the Course and Retention of Orthodontic Treatment. Healthcare (Basel). 2023 ;11(5):683. doi: 10.3390/healthcare11050683
Theodossy T, Bamber MA. Model surgery with a passive robot arm for orthognathic surgery planning. J Oral Maxillofac Surg. 2003 Nov;61(11):1310-7. doi: 10.1016/s0278-2391(03)00733-x.
Woo SY, Lee SJ, Yoo JY, Han JJ, Hwang SJ, Huh KH, Lee SS, Heo MS, Choi SC, Yi WJ. Autonomous bone reposition around anatomical landmark for robot-assisted orthognathic surgery. J Craniomaxillofac Surg. 2017;45(12):1980-8. doi: 10.1016/j.jcms.2017.09.001.
hang YD, Jia YX. The control of archwire bending robot based on MOTOMAN UP6. 2009 2nd International Conference on Biomedical Engineering and Informatics. IEEE 2009:1-5. https://doi.org/10.1109/BMEI.2009.5305333
Adel S, Zaher A, El Harouni N, Venugopal A, Premjani P, Vaid N. Robotic Applications in Orthodontics: Changing the Face of Contemporary Clinical Care. Biomed Res Int. 2021 ;2021:9954615. doi: 10.1155/2021/9954615.
Lobre WD, Callegari BJ, Gardner G, Marsh CM, Bush AC, Dunn WJ. Pain control in orthodontics using a micro pulse vibration device: A randomized clinical trial. Angle Orthod. 2016;86:625–30. https://doi.org/10.2319/072115- 492.1.
Li Y, Inamochi Y, Wang Z, Fueki K. Clinical application of robots in dentistry: A scoping review. J Prosthodont Res. 2023 Jun 10. doi: 10.2186/jpr.JPR_D_23_00027
Micheel CM, Nass SJ, Omenn GS, eds. Evolution of Translational Omics: Lessons Learned and the Path Forward. National Academies Press (US); 2012.
Yang X., et al. Multitissue Multiomics Systems Biology to Dissect Complex Diseases. Trends Mol Med. 2020 Aug;26(8):718-728. doi: 10.1016/j.molmed.2020.04.006. Epub 2020 May 18.
Kreitmaier P, Katsoula G, Zeggini E. Insights from multi-omics integration in complex disease primary tissues. Trends Genet. 2023;39(1):46-58. oi :10.1016/j.tig.2022.08.005.
Farmer DJT, Mlcochova H, Zhou Y et al. The developing mouse coronal suture at single-cell resolution. Nat. Commun. 2021;12(1):4797-4814. doi:10.1038/s41467-021-24917-9.
Joshi AS, Hatch NE, Hayami T, Jheon A, Kapila S. IGF-1 TMJ injections enhance mandibular growth and bone quality in juvenile rats. Orthod Craniofac Res. 2022;25(2):183-91. doi: 10.1111/ocr.12524.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Pakistan Journal of Medicine and Dentistry
This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access article distributed under the terms of the CreativeCommons Attribution License (CC BY) 4.0 https://creativecommons.org/licenses/by/4.0/