Assessment of Matrix Metalloproteinases a Prognostic Indicator in Advanced Fibrotic Lung Disease: A Systematic Review
DOI:
https://doi.org/10.36283/ziun-pjmd14-2/059Keywords:
Matrix Metalloproteinase-7, Matrix Metalloproteinase-9, Matrix Metalloproteinase-1, Biomarkers, Pulmonary FibrosisAbstract
Background: Fibrotic lung diseases were seen to have devastating effects among patients globally. Matrix metalloproteinases (MMP) including MMP-7, MMP-9, and MMP-1 have become promising biomarkers for idiopathic pulmonary fibrosis (IPF), and other fibrotic lung diseases. In this systematic review, the objective was to evaluate their roles in predicting disease severity, progression, and response to treatment to increase diagnostic and prognostic accuracy.
Methods: Following PRISMA guidelines, a systematic search of PubMed, Google Scholar, and Web of Science (January 2014 to December 2024) was conducted. Study screening was conducted using Covidence software and data extraction was performed using Microsoft Excel. Studies with MMP-7, MMP-9, or MMP-1 as potential biomarkers in IPF and fibrotic lung diseases with observed associations with disease outcomes met inclusion criteria. Studies not intended to be original, in focus, or with information that was insufficient in methodology were excluded as exclusion criteria. Qualitative synthesis was conducted based on fifteen studies (n=3,965 participants) that met eligibility criteria, mostly due to methodological heterogeneity. ROBINS-I (Risk of Bias in Non-Randomized Studies of Interventions) tool was used to assess the risk of biasness for each study.
Results: This systematic review selected 15 studies out of an initial pool of 112 articles. The sample size ranged from 12 to 2,312 participants, with a total of 3,965 participants combined. The MMP-7 was consistently elevated in 73.3% (n=11) of the studies and correlated with disease severity, lung function decline, and progression. In 46.7% (7) of studies, MMP-9 was associated with imaging severity and functional impairments, and in 26.7% (4) of studies, MMP-7 was found as the strongest biomarker, and the correlation coefficient calculated was from (r = 0.65 to 0.80), for MMP-9 it was (r = 0.4 to 0.6) and for MMP-1 (r = 0.3 to 0.45). Direct comparisons were limited by methodological and population variability.
Discussion: MMP-7 seemed to be the most reliable biomarker of disease severity and progression, while MMP-9 and MMP-1 added insights for research into disease mechanisms. Limitations were seen in the small sample size, single-center design, and lack of longitudinal data. Validation of these findings and development of clinical applications would depend on the conduct of larger, multicentre studies.
References
Kwon BS, Choe J, Do KH, Hwang HS, Chae EJ, Song JW. Computed tomography patterns predict the clinical course of idiopathic pulmonary fibrosis. Respiratory research. 2020 Dec;21:1-9. doi:10.1186/s12931-020-01562-2
Podolanczuk AJ, Thomson CC, Remy-Jardin M, Richeldi L, Martinez FJ, Kolb M, Raghu G. Idiopathic pulmonary fibrosis: state of the art for 2023. European Respiratory Journal. 2023 Apr 1;61(4). doi:10.1183/13993003.00957-2022
Glass DS, Grossfeld D, Renna HA, Agarwala P, Spiegler P, DeLeon J, Reiss AB. Idiopathic pulmonary fibrosis: Current and future treatment. The Clinical Respiratory Journal. 2022 Feb;16(2):84-96. doi:10.1111/crj.13420
Raghu G, Remy-Jardin M, Richeldi L, Thomson CC, Inoue Y, Johkoh T, Kreuter M, Lynch DA, Maher TM, Martinez FJ, Molina-Molina M. Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: an official ATS/ERS/JRS/ALAT clinical practice guideline. American Journal of Respiratory and Critical Care Medicine. 2022 May 1;205(9):e18-47. doi:10.1164/rccm.202202-0399ST
Behr J, Prasse A, Kreuter M, Johow J, Rabe KF, Bonella F, Bonnet R, Grohe C, Held M, Wilkens H, Hammerl P. Pirfenidone in patients with progressive fibrotic interstitial lung diseases other than idiopathic pulmonary fibrosis (RELIEF): a double-blind, randomized, placebo-controlled, phase 2b trial. The Lancet Respiratory Medicine. 2021 May 1;9(5):476-86. doi:10.1016/S2213-2600(20)30554-3
Mahalanobish S, Saha S, Dutta S, Sil PC. Matrix metalloproteinase: An upcoming therapeutic approach for idiopathic pulmonary fibrosis. Pharmacological Research. 2020 Feb 1;152:104591. doi:10.1016/j.phrs.2019.104591
Yue L, Shi Y, Su X, Ouyang L, Wang G, Ye T. Matrix metalloproteinases inhibitors in idiopathic pulmonary fibrosis: Medicinal chemistry perspectives. European Journal of Medicinal Chemistry. 2021 Nov 15;224:113714. doi:10.1016/j.ejmech.2021.113714
Stainer A, Faverio P, Busnelli S, Catalano M, Della Zoppa M, Marruchella A, Pesci A, Luppi F. Molecular biomarkers in idiopathic pulmonary fibrosis: state of the art and future directions. International Journal of Molecular Sciences. 2021 Jun 10;22(12):6255. doi:10.3390/ijms22126255
Lobo LJ, Liu Y, Li P, Ramaswamy M, Swaminathan AC, Veeraraghavan S, Fan Y, Neely ML, Palmer SM, Olson AL, ILD-PRO Registry investigators†. Design and baseline characteristics of the ILD-PRO registry in patients with progressive pulmonary fibrosis. BMC Pulmonary Medicine. 2024 Sep 27;24(1):468. doi:10.1186/s12890-024-02345-6
Patel H, Shah JR, Patel DR, Avanthika C, Jhaveri S, Gor K. Idiopathic pulmonary fibrosis: Diagnosis, biomarkers and newer treatment protocols. Disease-a-Month. 2023 Jul 1;69(7):101484. doi:10.1016/j.disamonth.2022.101484
Toprak OB, Özyılmaz E, Saygideger Y, Güzel E. Relationship between disease severity and prognostic indicators and matrix metalloproteinase in patients with stable idiopathic pulmonary fibrosis. Cukurova Medical Journal. 2022;47(3):1273-80. doi:10.17826/cumj.1101460
Balci A, Düz ME, Vurmaz A, Çilekar Ş, Kaya F. Comprehensive biomarker analysis of patients with idiopathic pulmonary fibrosis and interstitial lung disease with healthy individuals. European Review for Medical & Pharmacological Sciences. 2023 Jun 15;27(12). doi:10.26355/eurrev_202306_32794
Luedders BA, Wheeler AM, Ascherman DP, Baker JF, Duryee MJ, Yang Y, Roul P, Wysham KD, Monach P, Reimold A, Kerr GS. Plasma matrix metalloproteinase concentrations and risk of interstitial lung disease in a prospective rheumatoid arthritis cohort. Arthritis & Rheumatology. 2024 Jul;76(7):1013-22. doi:10.1002/art.42580
Clynick B, Corte TJ, Jo HE, Stewart I, Glaspole IN, Grainge C, Maher TM, Navaratnam V, Hubbard R, Hopkins PM, Reynolds PN. Biomarker signatures for progressive idiopathic pulmonary fibrosis. European Respiratory Journal. 2022 Mar 1;59(3). doi:10.1183/13993003.02025-2021
Becerril C, Montaño M, Cisneros J, Mendoza-Milla C, Pardo A, Ortiz-Quintero B, Selman M, Ramos C. Mesenchymal–epithelial transition in fibroblasts of human normal lungs and interstitial lung diseases. Biomolecules. 2021 Mar 4;11(3):378. doi:10.3390/biom11030378
Liu M, Xue M, Zhang T, Lin R, Guo B, Chen Y, Cheng ZJ, Sun B. Detection of interstitial pneumonia with autoimmune features and idiopathic pulmonary fibrosis are enhanced by the involvement of matrix metalloproteinases levels and clinical diagnosis. Journal of Clinical Laboratory Analysis. 2022 Nov;36(11):e24734. doi:10.1002/jcla.24734
Lv C, Zhang Q, Tang P, Guo L, Ding Q. Serum MMP-9, SP-D, and VEGF levels reflect the severity of connective tissue disease-associated interstitial lung diseases. Advances in Rheumatology. 2022 Nov 14;62:37. doi:10.1186/s42358-022-00247-0
Espindola MS, Habiel DM, Coelho AL, Stripp B, Parks WC, Oldham J, Martinez FJ, Noth I, Lopez D, Mikels-Vigdal A, Smith V. Differential responses to targeting matrix metalloproteinase 9 in idiopathic pulmonary fibrosis. American Journal of Respiratory and Critical Care Medicine. 2021 Feb 15;203(4):458-70. doi: 10.1164/rccm.201910-1977OC
Li Z, Zhao H, Wang S, Yan P, Yuan H, Zhao M, Wan R, Wang J, Zhu Z, Li Z, Yang J. Comprehensive Landscape of Matrix Metalloproteinases in the Pathogenesis of Idiopathic Pulmonary Fibrosis. Fibrosis. 2023 May;1(1):10004. doi: 10.35534/fibrosis.2023.10004
Wang E, Wang Y, Zhou S, Xia X, Han R, Fei G, Zeng D, Wang R. Identification of three hub genes related to the prognosis of idiopathic pulmonary fibrosis using bioinformatics analysis. International Journal of Medical Sciences. 2022;19(9):1417. doi: 10.7150/ijms.75612
Cabrera Cesar E, Lopez-Lopez L, Lara E, Hidalgo-San Juan MV, Parrado Romero C, Palencia JL, Martín-Montañez E, Garcia-Fernandez M. Serum biomarkers in the differential diagnosis of idiopathic pulmonary fibrosis and connective tissue disease-associated interstitial lung disease. Journal of Clinical Medicine. 2021 Jul 18;10(14):3167. doi:10.3390/jcm10143167
Majewski S, Szewczyk K, Żal A, Białas AJ, Miłkowska-Dymanowska J, Piotrowski WJ. Serial measurements of circulating KL-6, SP-D, MMP-7, CA19-9, CA-125, CCL18, and periostin in patients with idiopathic pulmonary fibrosis receiving antifibrotic therapy: an exploratory study. Journal of Clinical Medicine. 2021 Aug 28;10(17):3864. doi:10.3390/jcm10173864
Kreus M, Lehtonen S, Skarp S, Kaarteenaho R. Extracellular matrix proteins produced by stromal cells in idiopathic pulmonary fibrosis and lung adenocarcinoma. PLoS One. 2021 Apr 27;16(4):e0250109. doi:10.1371/journal.pone.0250109
Kass DJ, Nouraie M, Glassberg MK, Ramreddy N, Fernandez K, Harlow L, Zhang Y, Chen J, Kerr GS, Reimold AM, England BR. Comparative profiling of serum protein biomarkers in rheumatoid arthritis-associated interstitial lung disease and idiopathic pulmonary fibrosis. Arthritis & Rheumatology. 2020 Mar;72(3):409-19. doi:10.1002/art.41191
Todd JL, Vinisko R, Liu Y, Neely ML, Overton R, Flaherty KR, Noth I, Newby LK, Lasky JA, Olman MA, Hesslinger C. Circulating matrix metalloproteinases and tissue metalloproteinase inhibitors in patients with idiopathic pulmonary fibrosis in the multicenter IPF-PRO Registry cohort. BMC Pulmonary Medicine. 2020 Dec;20:1-2. doi:10.1186/s12890-020-01216-1
Mei Q, Liu Z, Zuo H, Yang Z, Qu J. Idiopathic pulmonary fibrosis: an update on pathogenesis. Frontiers in pharmacology. 2022 Jan 19;12:797292. doi:10.3389/fphar.2021.797292
Caligiuri A, Gentilini A, Pastore M, Gitto S, Marra F. Cellular and molecular mechanisms underlying liver fibrosis regression. Cells. 2021 Oct 15;10(10):2759. doi:10.3390/cells10102759
Muneesa MF, Shaikh SB, Jeena TM, Bhandary YP. Inflammatory mediators in various molecular pathways are involved in the development of pulmonary fibrosis. International Immunopharmacology. 2021 Jul 1;96:107608. doi:10.1016/j.intimp.2021.107608
Kim HJ, Snyder LD, Adegunsoye A, Neely ML, Bender S, White ES, Conoscenti CS, Strek ME. Hospitalizations in patients with idiopathic pulmonary fibrosis. Respiratory research. 2021 Dec;22:1-9. doi:10.1186/s12931-021-01795-0.
Chuliá-Peris L, Carreres-Rey C, Gabasa M, Alcaraz J, Carretero J, Pereda J. Matrix metalloproteinases and their inhibitors in pulmonary fibrosis: EMMPRIN/CD147 comes into play. International journal of molecular sciences. 2022 Jun 21;23(13):6894. doi:10.3390/ijms23136894
Inui N, Sakai S, Kitagawa M. Molecular pathogenesis of pulmonary fibrosis, with focus on pathways related to TGF-β and the ubiquitin-proteasome pathway. International journal of molecular sciences. 2021 Jun 5;22(11):6107. doi:10.3390/ijms22116107
Amubieya O, Todd JL, Neely ML, Kaner RJ, Lasky JA, Namen A, Hesslinger C, Palmer SM, Weigt SS, Belperio JA. Associations of circulating matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases with clinically relevant outcomes in idiopathic pulmonary fibrosis: Data from the IPF-PRO Registry. Plos one. 2024 Oct 17;19(10):e0312044. doi:10.1371/journal.pone.0312044
Ji XY, Jin P, Yu G, Yu P. Serum biomarkers in evaluation and management of idiopathic pulmonary fibrosis. Precision Medicine Research. 2020;2(3):127-35. doi:10.12032/PMR2020091901
Allen RJ, Guillen-Guio B, Oldham JM, Ma SF, Dressen A, Paynton ML, Kraven LM, Obeidat ME, Li X, Ng M, Braybrooke R. Genome-wide association study of susceptibility to idiopathic pulmonary fibrosis. American journal of respiratory and critical care medicine. 2020 Mar 1;201(5):564-74. doi:10.1164/rccm.201905-1017OC
Raghu G, Remy-Jardin M, Richeldi L, Thomson CC, Inoue Y, Johkoh T, Kreuter M, Lynch DA, Maher TM, Martinez FJ, Molina-Molina M. Idiopathic pulmonary fibrosis (an update) and progressive pulmonary fibrosis in adults: an official ATS/ERS/JRS/ALAT clinical practice guideline. American Journal of Respiratory and Critical Care Medicine. 2022 May 1;205(9):e18-47. doi:10.1164/rccm.202202-0399ST
Marzoog BA. Pulmonary fibrosis; risk factors and molecular triggers, insight for neo therapeutic approach. Current Respiratory Medicine Reviews. 2022 Nov 1;18(4):259-66. doi: 10.2174/1573398X18666221115102956
Peng Z, Konai MM, Avila-Cobian LF, Wang M, Mobashery S, Chang M. MMP-1 and ADAM10 as targets for therapeutic intervention in idiopathic pulmonary fibrosis. ACS Pharmacology & Translational Science. 2022 Jul 18;5(8):548-54. doi: 10.1021/acsptsci.2c00050
Stankovic S, Stjepanovic M, Asanin M. Biomarkers in Idiopathic Pulmonary Fibrosis. InIdiopathic Pulmonary Fibrosis 2021 Sep 23. IntechOpen. doi: 10.5772/intechopen.100042
Takeuchi T, Hayashi M, Tamita T, Nomura Y, Kojima N, Mitani A, Takeda T, Hitaka K, Kato Y, Kamitani M, Mima M. Discovery of aryloxyphenyl–heptapeptide hybrids as potent and selective matrix metalloproteinase-2 inhibitors for the treatment of idiopathic pulmonary fibrosis. Journal of Medicinal Chemistry. 2022 Jun 10;65(12):8493-510. doi: 10.1021/acs.jmedchem.2c00456
White ES, Thomas M, Stowasser S, Tetzlaff K. Challenges for clinical drug development in pulmonary fibrosis. Frontiers in Pharmacology. 2022 Jan 31;13:823085. Doi: 10.3389/fphar.2022.823085

Downloads
Published
Issue
Section
License
Copyright (c) 2025 Pakistan Journal of Medicine and Dentistry

This work is licensed under a Creative Commons Attribution 4.0 International License.
This is an open-access article distributed under the terms of the CreativeCommons Attribution License (CC BY) 4.0 https://creativecommons.org/licenses/by/4.0/