Exploring The Legacy: The Biological Interactions of Bis Schiff Bases and Their Coordinated Azomethine Derivatives Over Time

Authors

  • Zahid Khan University of Karachi
  • Muhammad Asad Khan Tanoli University of Karachi

DOI:

https://doi.org/10.36283/PJMD13-2/014

Keywords:

Schiff Bases, Coordination Complexes, Biomedical Research

Abstract

Schiff base class of compounds has a double bond between carbon and nitrogen. They form a carbonyl molecule, like an aldehyde or ketone, when combined with a primary amine. A Schiff base is structurally an aldehyde or ketone's nitrogen counterpart where the carbonyl group (CO) has been replaced with an imine or azomethine group. Schiff bases are a significant class of organic compounds with potential applications in many biological fields. They are best recognized for their capacity to generate transition metal complexes. Schiff-base ligands are easily produced and can form complexes with almost any metal ion. The main focus of this review is on the bis Schiff bases, a subclass of Schiff bases identified by the occurrence of two azomethine groups in their structures. These azomethine groups are major contributors to the activity of these compounds, along with substituent effects on key positions. For scientists interested in learning about these particular compounds' potential for specific biological uses, this article provides literature examples of the compounds in question and their biological action processes.  A review focusing on the biological applications of Schiff base-derived ligands and their complexes is essential due to the numerous recent publications detailing their antibacterial, antioxidant, and enzyme-inhibitory activities.

 

Author Biographies

Zahid Khan, University of Karachi

 

 

Muhammad Asad Khan Tanoli, University of Karachi

 

 

References

Murukan B, Mohanan K. Synthesis, characterization, electrochemical properties and antibacterial activity of some transiton metal complexes with [(2-hydroxy-1-naphthaldehyde)-3-isatin]-bishydrazone. Transition Metal Chemistry. 2006;31(4):441-446.

https://doi.org/10.1007/s11243-006-0011-7

Khan Z, Maqsood ZT, Tanoli MAK, Khan KM, Iqbal L, Lateef M. Synthesis, Characterization, In-Vitro Antimicrobial and Antioxidant Activities of Co+2, Ni+2, Cu+2 and Zn+2 Complexes of 3-(2-(2-hydroxy-3-methoxybenzylidene) hydrazono) indolin-2-one. Journal of Basic and Applied Sciences. 2015;11:125-130. https://doi.org/10.6000/1927-5129.2015.11.17

Balan K, Ratha P, Prakash G, Viswanathamurthi P, Adisakwattana S, Palvannan T. Evaluation of invitro α-amylase and α-glucosidase inhibitory potential of N2O2 schiff base Zn complex. Arabian Journal of Chemistry. 2017;10(5):732-728. https://doi.org/10.1016/j.arabjc.2014.07.002

Kavitha P, Reddy KL. Pd (II) complexes bearing chromone based Schiff bases: Synthesis, characterisation and biological activity studies. Arabian Journal of Chemistry. 2016;9(5):640-648. https://doi.org/10.1016/j.arabjc.2013.06.018

Brodowska K, Lodyga‐Chruscinska E. Schiff bases—interesting range of applications in various fields of science. ChemInform. 2015;46(11) https://doi.org/10.1002/chin.201511346

Brodowska K, Lodyga‐Chruscinska E. Schiff Bases—Interesting Range of Applications in Various Fields of Science. ChemInform. 2015;46(11). https://doi.org/10.1002/chin.201511346

Sundararajan M, Jeyakumar T, Anandakumaran J, Selvan BK. Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: Spectral, thermal, XRD and antimicrobial studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014;131:82-93. https://doi.org/10.1016/j.saa.2014.04.055

Khan KM, Khan M, Ali M, Taha M, Rasheed S, Perveen S, et al. Synthesis of bis-Schiff bases of isatins and their antiglycation activity. Bioorganic & medicinal chemistry. 2009;17(22):7795-7801. https://doi.org/10.1016/j.bmc.2009.09.028

Kumar S, Dhar DN, Saxena P. Applications of metal complexes of Schiff bases—a review. J Sci Ind Res. 2009;68(3):181-187.

Rajavel R, Vadivu MS, Anitha C. Synthesis, physical characterization and biological activity of some Schiff base complexes. Journal of Chemistry. 2008;5(3):620-626. https://doi.org/10.1155/2008/583487

Sriram D, Yogeeswari P, Myneedu NS, Saraswat V. Abacavir prodrugs: Microwave-assisted synthesis and their evaluation of anti-HIV activities. J Bioorganic Medicinal Chemistry Letters. 2006;16(8):2127-2129. DOI: https://doi.org/10.1002/chin.200629189

Tanoli AK, Khan Z, Kamal T, Ali M, Latif M, Maqsood ZT. Metal-based biologically active compounds: Synthesis, spectral and antioxidant studies of transition metal complexes with hydrazone derivatives. Pakistan Journal of Pharmaceutical Sciences. 2019;32(1):103-108. DOI: https://pubmed.ncbi.nlm.nih.gov/30772797/

Khan K, Khan Z. Heavy Metal Resistant Bacteria from Soil as Potential Bioremediation Targets: Isolation, Screening and Biochemical Identification. Journal of the Chemical Society of Pakistan. 2021;43(4). DOI: https://doi.org/10.52568/000586

Zahid Khan, Zahida T. Maqsood, M. Asad Tanoli, Lubna Iqbal, Mehreen Lateef. Synthesis, Characterization, and In-Vitro Anti-Microbial and Anti-Oxidant Activities of Co+2, Ni+2, Cu+2 and Zn+2 Complexes of 5-Chloro-2-Hydroxybenzaldehyde-N-(2-Oxo-1, 2-Dihydro-3H-Indol-3-Ylidene) Hydrazone. Pakistan Journal of Chemistry. 2015;5(3):143-149. DOI: https://doi.org/10.15228/2015.v05.i03.p07201509310955

Siddappa K, Mayana NS. Synthesis, Spectroscopic Characterization, and Biological Evaluation Studies of 5-Bromo-3-(((hydroxy-2-methylquinolin-7-yl) methylene) hydrazono) indolin-2-one and Its Metal (II) Complexes. Bioinorganic chemistry and applications. 2014;2014. DOI: https://doi.org/10.1155/2014/483282

Abu-Dief AM, Mohamed IM. A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef University Journal of Basic and Applied Sciences. 2015;4(2):119-133. DOI: https://doi.org/10.1016/j.bjbas.2015.05.004

DeVita VT, Lawrence TS, Rosenberg SA. DeVita, Hellman, and Rosenberg's cancer: principles & practice of oncology: Lippincott Williams & Wilkins; 2008. DOI: https://doi.org/10.1002/hon.2900070507

Dongfang X, Shuzhi M, Guangying D, Qizhuang H, Dazhi S. Synthesis, characterization, and anticancer properties of rare earth complexes with Schiff base and o-phenanthroline. Journal of Rare Earths. 2008;26(5):643-647. DOI: https://doi.org/10.1016/s1002-0721(08)60153-2

Krajewska B. Urease immobilized on chitosan membrane. Inactivation by heavy metal ions. Journal of Chemical Technology & Biotechnology. 1991;52(2):157-162. DOI: https://doi.org/10.1002/jctb.280520203

Krajewska B. Mono-(Ag, Hg) and di-(Cu, Hg) valent metal ions effects on the activity of jack bean urease. Probing the modes of metal binding to the enzyme. Journal of enzyme inhibition and medicinal chemistry. 2008;23(4):535-542. DOI: https://doi.org/10.1080/14756360701743051

Krajewska B, Leszko M, Zaborska W. Urease immobilized on chitosan membrane: preparation and properties. Journal of Chemical Technology & Biotechnology. 1990;48(3):337-350. DOI: https://doi.org/10.1002/jctb.280480309

Krajewska B, Zaborska W, Chudy M. Multi-step analysis of Hg2+ ion inhibition of jack bean urease. Journal of inorganic biochemistry. 2004;98(6):1160-1168. DOI: https://doi.org/10.1016/s0162-0134(04)00108-4

Dash B, Mahapatra P, Panda D, Pattnaik J. Fungicidal Activities And Mass Spectral Studies Of Some Schiff Bases Derived From P‐Hydroxybenzaldehyde And Their Derivatives. Chemischer Informationsdienst. 1985;16(45) DOI: https://doi.org/10.1002/chin.198545182

Prasanna M, Kumar KP. Synthesis, characterisation and evaluation of antitumour and antifungal activities of transition metal complexes of 4-pyridinecarboxylic acid [(2-hydroxyphenyl) methylene] hydrazide and its 5-methoxy derivative. International Journal Pharmceutical Biomedicine Science. 2013;4(1):24-29. DOI: https://doi.org/10.13005/ojc/280455

Rehman W, Baloch MK, Muhammad B, Badshah A, Khan KM. Characteristic spectral studies andin vitro antifungal activity of some Schiff bases and their organotin (IV) complexes. Chinese Science Bulletin. 2004;49(2):119-122. DOI: https://doi.org/10.1360/03wb0174

Thimmaiah K, Lloyd W, Chandrappa G. Stereochemistry and fungitoxicity of complexes of p-anisaldehydethiosemicarbazone with Mn (II), Fe (II), Co (II) and Ni (II). Inorganica Chimica Acta. 1985;106(2):81-83. DOI: https://doi.org/10.1016/s0020-1693(00)82252-5

MISHRA P, Gupta P, SHAKYA AK. Synthesis of some Schiff bases of 3-amino-2-methylquinazolin-4 (3H)-ones and their antimicrobial activities. Journal of the Indian Chemical Society. 1991;68(11):618-619. DOI: https://pubmed.ncbi.nlm.nih.gov/7649610/

Yousif E, Majeed A, Al-Sammarrae K, Salih N, Salimon J, Abdullah B. Metal complexes of Schiff base: preparation, characterization and antibacterial activity. Arabian Journal of Chemistry. 2017;10:S1639-S44. DOI: https://doi.org/10.1016/j.arabjc.2013.06.006

Fonkui TY, Ikhile MI, Ndinteh DT, Njobeh PB. Microbial activity of some heterocyclic Schiff bases and metal complexes: A review. Tropical Journal of Pharmaceutical Research. 2018;17(12):2507-2518. DOI: https://doi.org/10.4314/tjpr.v17i12.29

Belwal CK, Joshi KA. Pharmacological examination and synthesis of some schiff bases and thiazolidinone derivatives of 5-amino-1H-imidazole-4-carboxamide. Der Pharma Chemica. 2012;4(5):1873-1878. DOI: https://doi.og.org/ 56374528

Kaur H, Kaur H, Chawla A, Baghel U, Dhawan R. A review: synthesis schemes of antimicrobial and anticancer thiazole derivatives. Journal of Global Trends in Pharmaceutical Sciences. 2014;5(2):1684-1691. DOI: https://doi.org/10.24947/2380-5552/2/3/127

Pontiki E, Hadjipavlou-Litina D, Chaviara A, Chemistry M. Evaluation of anti-inflammatory and antioxidant activities of copper (II) Schiff mono-base and copper (II) Schiff base coordination compounds of dien with heterocyclic aldehydes and 2-amino-5-methyl-thiazole. Journal of enzyme inhibition and medicinal chemistry. 2008;23(6):1011-1017. DOI: https://doi.org/10.1080/14756360701841251

Srivastava V, Srivastava S, Mishra A. Complexes of Cobalt (II), Nickel (II) and Copper (II) with Furfurylidene-Nicotinamide Schiff Base. Journal of the Indian Chemical Society. 1995;72(1):47-8. DOI: https://doi.org/10.1080/15533179508218199

Saxena C, Shrivastava S. Mn (II), Co (II), Ni (II) and Cu (II) complexes with p-toly-2-furylgloxalimine. J Ind Chem. 1987:685-686. DOI: https://doi.org/10.1007/bf00156153

Rao NR, Rao P, Reddy G, Ganorkar M. Metal-chelates of a new physiologically active ons tridentate schiff-base. Council scientific industrial research publ & info directorate, new delhi 110012, INDIA; 1987. p. 887-890.

Dhakarey R, Saxena g. Synthesis, spectral and magnetic studies of nickel (II) complexes with schiff-bases of heterocyclic aldehyde. Indian chemical soc 92 acharya prafulla chandra rd attn: dr indrajit kar/exec sec, calcutta 700009, INDIA; 1987. p. 685-686. DOI: https://doi.org/10.29333/ejac/97267

da Silva CM, da Silva DL, Modolo LV, Alves RB, de Resende MA, Martins CV, et al. Schiff bases: A short review of their antimicrobial activities. Journal of Advanced research. 2011;2(1):1-8. DOI: https://doi.org/10.1016/j.jare.2010.05.004

Kiran G, Maneshwar T, Rajeshwar Y, Sarangapani M. Microwave-assisted synthesis, characterization, antimicrobial and antioxidant activity of some new isatin derivatives. Journal of Chemistry. 2012;2013. DOI: https://doi.org/10.1155/2013/192039

Kumar S, Dhar DN, Saxena P. Applications of metal complexes of Schiff bases-A review. 2009. DOI: https://doi.org/10.1002/9783527839476.ch13

Venkatesh P. Synthesis, characterization and antimicrobial activity of various schiff bases complexes of Zn (II) and Cu (II) ions. Asian J Pharm Hea Sci. 2011;1(1):8-11. DOI: https://doi.org/10.1016/j.rechem.2019.100006

Taubeneck U. TJ FRANKLIN and GA SNOW, Biochemistry of Antimicrobial Action . XII, 224 S., 85 Abb., 1 Tab. London 1975: Chapman and Hall. $39.50. Zeitschrift für allgemeine Mikrobiologie. 1977;17(4):327-.

Thimmaiah K, Lloyd W, Chandrappa G. Extractive Spectrophotometric determination of molybdenum (V) in molybdenum steels. Microchemical journal. 1985;32(3):281-285. DOI: https://doi.org/10.1016/0026-265x(85)90090-6

Yousif I, Alias M. Synthesis, Characterization, Theoretical Treatment And Antimicrobial Activity Studies Of Some Metal Ions Complexes With 2-Hydroxy-4-Nitro Phenyl Piperonalidene. Journal of Al-Nahrain University-Science. 2010;13(4):1-14. DOI: https://doi.org/10.22401/jnus.13.4.01

Alkan M, Yüksek H, Gürsoy-Kol Ö, Calapoğlu M. Synthesis, acidity and antioxidant properties of some novel 3, 4-disubstituted-4, 5-dihydro-1H-1, 2, 4-triazol-5-one derivatives. Molecules. 2008;13(1):107-121. DOI: https://doi.org/10.3390/molecules13010107

Hanif M, Shoaib K, Saleem M, Hasan Rama N, Zaib S, Iqbal J. Synthesis, urease inhibition, antioxidant, antibacterial, and molecular docking studies of 1, 3, 4-oxadiazole derivatives. ISRN pharmacology. 2012;2012. DOI: https://doi.org/10.5402/2012/928901

Alam MS, Choi J-H, Lee D-U. Synthesis of novel Schiff base analogues of 4-amino-1, 5-dimethyl-2-phenylpyrazol-3-one and their evaluation for antioxidant and anti-inflammatory activity. Bioorganic & medicinal chemistry. 2012;20(13):4103-4108. DOI: https://doi.org/10.1016/j.bmc.2012.04.058

Bala S, Uppal G, Kamboj S, Saini V, Prasad D. Design, characterization, computational studies, and pharmacological evaluation of substituted-N′-[(1E) substituted-phenylmethylidene] benzohydrazide analogs. Medicinal Chemistry Research. 2013;22(6):2755-2767. DOI: https://doi.org/10.1007/s00044-012-0270-0

Ali B, Shakir MR, Iqbal MA. Techniques in the synthesis of mononuclear manganese complexes: a review. Reviews in Inorganic Chemistry. 2017;37(3-4):105-130. DOI: https://doi.org/10.1515/revic-2017-0004

Yrjönen T, Peiwu L, Summanen J, Hopia A, Vuorela H. Free radical-scavening activity of phenolics by reversed-phase TLC. Journal of the American Oil Chemists' Society. 2003;80(1):9. DOI: https://doi.org/10.1007/s11746-003-0642-z

Misra S, Pandeya KB, Tiwari AK, Ali AZ, Saradamani T, Agawane SB, et al. -Glucosidase inhibitory activities of some Oxovanadium (IV) complexes: Examples of low IC50 values. International Journal of Nutrition and Metabolism. 2012;4(1):11-18. DOI: https://doi.org/10.5897/IJNAM.9000022

Jamil W, Perveen S, Shah SAA, Taha M, Ismail NH, Perveen S, et al. Phenoxyacetohydrazide Schiff bases: β-Glucuronidase inhibitors. Molecules. 2014;19(7):8788-8802. DOI: https://doi.org/10.3390/molecules19078788

Ionuţ L, Anda A, Vasile B, Gabriela V, et al. Synthesis and Degradation of Schiff Bases Containing Heterocyclic Pharmacophore. 2015; 16(1): 1711–1727. DOI: doi: 10.3390/ijms16011711

Liu M, Zhang W, Wei J, Lin X. Synthesis and α-glucosidase inhibitory mechanisms of bis (2, 3-dibromo-4, 5-dihydroxybenzyl) ether, a potential marine bromophenol α-glucosidase inhibitor. Marine drugs. 2011;9(9):1554-1565. DOI: https://doi.org/10.3390/md9091554

DeMartino JK, Garfunkle J, Hochstatter DG, Cravatt BF, Boger DL. Exploration of a fundamental substituent effect of α-ketoheterocycle enzyme inhibitors: potent and selective inhibitors of fatty acid amide hydrolase. Bioorganic & medicinal chemistry letters. 2008;18(22):5842-5846. DOI: https://doi.org/10.1016/j.bmcl.2008.06.084

Boger DL, Sato H, Lerner AE, Hedrick MP, Fecik RA, Miyauchi H, et al. Exceptionally potent inhibitors of fatty acid amide hydrolase: the enzyme responsible for degradation of endogenous oleamide and anandamide. Proceedings of the National Academy of Sciences. 2000;97(10):5044-5049. DOI: https://doi.org/10.1073/pnas.97.10.5044

Romero FA, Hwang I, Boger DL. Delineation of a fundamental α-ketoheterocycle substituent effect for use in the design of enzyme inhibitors. Journal of the American Chemical Society. 2006;128(43):14004-14005. DOI: https://doi.org/10.1021/ja064522b.s001

Cornman CR, Zovinka EP, Meixner MH. Vanadium (IV) complexes of an active-site peptide of a protein tyrosine phosphatase. Inorganic Chemistry. 1995;34(21):5099-5100. DOI: https://doi.org/10.1021/ic00125a002

Masetti M, Falchi F, Gioia D, Recanatini M, Ciurli S, Musiani FJM. Targeting the protein tunnels of the urease accessory complex: a theoretical investigation. 2020;25(12):2911. DOI: https://doi.org/10.3390/molecules25122911

Dong X, Guo T, Li Y, Cui Y, Wang Q. Synthesis, structure and urease inhibition studies of Schiff base copper (II) complexes with planar four-coordinate copper (II) centers. Journal of inorganic biochemistry. 2013;127:82-89. DOI: https://doi.org/10.1016/j.jinorgbio.2013.07.036

Chen W, Li Y, Cui Y, Zhang X, Zhu H-L, Zeng Q. Synthesis, molecular docking and biological evaluation of Schiff base transition metal complexes as potential urease inhibitors. European journal of medicinal chemistry. 2010;45(10):4473-4478. DOI: https://doi.org/10.1016/j.ejmech.2010.07.007

You ZL, Han X, Zhang GN. Synthesis, Crystal Structures, and Urease Inhibitory Activities of Three Novel Thiocyanato‐bridged Polynuclear Schiff Base Cadmium (II) Complexes. Zeitschrift für anorganische und allgemeine Chemie. 2008;634(1):142-146. DOI: https://doi.org/10.1002/zaac.200700345

Chen X, Wang C, Fu J, Huang Z, Xu Y, Wang SJIcc. Synthesis, inhibitory activity and inhibitory mechanism studies of Schiff base Cu (II) complex as the fourth type urease inhibitors. 2019;99:70-76. DOI: https://doi.org/10.1016/j.inoche.2018.10.029

Cui Y, Dong X, Li Y, Li Z, Chen WJEjomc. Synthesis, structures and urease inhibition studies of Schiff base metal complexes derived from 3, 5-dibromosalicylaldehyde. 2012;58:323-331. DOI: https://doi.org/10.1016/j.ejmech.2012.09.037

de Fátima Â, de Paula Pereira C, Olímpio CRSDG, de Freitas Oliveira BG, Franco LL, da Silva PHCJJoar. Schiff bases and their metal complexes as urease inhibitors–a brief review. 2018;13:113-126. DOI: https://doi.org/10.1016/j.jare.2018.03.007

Dong X, Li Y, Li Z, Cui Y, Zhu HJJoib. Synthesis, structures and urease inhibition studies of copper (II) and nickel (II) complexes with bidentate N, O-donor Schiff base ligands. 2012;108:22-29. DOI: https://doi.org/10.1016/j.jinorgbio.2011.12.006

Li Y-G, Shi D-H, Zhu H-L, Yan H, Ng SWJIca. Transition metal complexes (M= Cu, Ni and Mn) of Schiff-base ligands: Syntheses, crystal structures, and inhibitory bioactivities against urease and xanthine oxidase. 2007;360(9):2881-2889. DOI: https://doi.org/10.1016/j.ica.2007.02.019

Niu F, Yan K-X, Pang L, Qu D, Zhao X, You ZJICA. Synthesis and structural characterization of Schiff base copper (II) complexes with Helicobacter pylori urease inhibitory activities. 2015;435:299-304. DOI: https://doi.org/10.1016/j.ica.2015.07.014

Sangeeta S, Ahmad K, Noorussabah N, Bharti S, Mishra M, Sharma S, et al. Synthesis, crystal structures, molecular docking and urease inhibition studies of Ni (II) and Cu (II) Schiff base complexes. 2018;1156:1-11. DOI: https://doi.org/10.1016/j.molstruc.2017.11.062

You Z, Liu M, Wang C, Sheng G, Zhao X, Qu D, et al. Inhibition studies of Helicobacter pylori urease with Schiff base copper (II) complexes. 2016;6(20):16679-16690. DOI: https://doi.org/10.1039/c6ra00500d

You Z-L, Lu Y, Zhang N, Ding B-W, Sun H, Hou P, et al. Preparation and structural characterization of hetero-dinuclear Schiff base copper (II)–zinc (II) complexes and their inhibition studies on Helicobacter pylori urease. 2011;30(13):2186-2194. Doi: https://doi.org/10.1016/j.poly.2011.05.048

Published

2024-04-16

How to Cite

Khan, Z., & Tanoli, M. A. K. (2024). Exploring The Legacy: The Biological Interactions of Bis Schiff Bases and Their Coordinated Azomethine Derivatives Over Time. Pakistan Journal of Medicine and Dentistry, 13(2), 90–101. https://doi.org/10.36283/PJMD13-2/014

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.